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I. Introduction

This Annual Scientific Report covers work performed under
Contract No. N00014-77-C-0102, entitled Excimer Potential Curves. This
report describes the present status of our effort to develop and implement
semi-empirical and theoretical methods for obtaining potential curves of
diatomic excimer systems. Our emphasis is on developing and testing
methods which will be reasonably accurate yet will not require long lead
times for development and will not require excessive amounts of computer
time for production runs. The object is to enable experimentalists to
choose or reject possible laser systems on the basis of inexpensive
theoretical calculations rather than on the basis of expensive and time-

consuming experiments.

We are particularly interested in developing methods that are applicable
to excimer systems because of the current emphasis on these systems as
candidates for efficient, high-power visible and ultraviolet lasers.

After consultation with A. V. Phelps and A. Gallagher of J.I.L.A., we
have decided to concentrate initially on molecules of rare gases with

Thallium, Indium or Gallium.

For systems with a large number of electrons, such as T1-R , present
Configuration Interaction (CI) programs are inadequate and cffer no hope
of extension in the immediate future. Consequently, our effort is con-
centrated on developing and testing semi-empirical methods that can easily

and rapidly be applied to the excimer systems of interest. This report
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covers our progress in three areas: 1) We have performed a configuration

interaction calculation on GaKr , 2) We are applying the Gordon-Kim
theory to the group I1IB-rare gas systems, 3) We 2ie continuing the de-

velopment of the semi-empirical electron scattering model.

Our work in the first area is close to completion. The CI calculation
on GaKr was done so that we can compare the results of our approximate
methods with accurate potential curves. GaKr was chosen as the test
system since it is the largest of the systems we are interested in for
which a CI calculation can be done. The GaKr curves have been extrapolated
to give curves for InKr and TIKr ; however, these extrapolation are
very approximate. In particular, the positions and depths of the potential
wells for InKr and TIKr are not given accurately. These potential
curves have been used to predict the spontaneous emission and absorption
coefficients for GaKr , InKr and TiKr . The details of this work are
given in Section II, which is a rough draft of a paper on this work that

will be submitted for publication.

Although at the time the proposal was written, applications of the
Gordon-Kim electron gas theory to open shell systems had failed to give
reasonabie results, recent applications of the G-K theory to cpen shell -
closed shell interactions have been successful (M. J. Clugston and R. G.
Gordon, JCP 66, 239 (1977)). Consequently, we are now investigating the
possibility of using this method to obtain approximate votential curves
for GaR . OQur preliminary calculations on GaKr are described in

Section III.




The basic theory and computational method for the electron scattering
model are described in Section IV. We are proceeding with this approach,
in addition to the Gordon-Kim theory, because the electron-scattering model
shovld provide a more accurate description of atomic distortion and should

be applicable to a wider range of mclecules than the G-K theory.



II. Electronic States of GaKr : Ab initio calculations of a prototype

for TlKr

The work in this section was performed in conjunction with Thom H.
Dunning, Jr. of Los Alamos Scientific Laboratury and is a rough draft of

a paper that will be submitted for publication.



Flectronic States of GaKr : Ab initio calculations of a prototype for

T1Kr
I. Introduction

Among the metal-rare gas eximers, the TlXe system is believed to
be an excellent candidate for an efficient visible, high power, tunable
1aser.] Since ab initio calculations on this system are beyond the scope
of present computer programs, we present here a configuration interaction
(CI) calculation on GaKr , which is the largest group IIIB-rare gas system
for which CI calculations can be done. We use the calculated GaKr curves
to model the potential curves for InKr and T1Kr . Although our mode!
does not allow further extrapolation from TI1Kr to TIXe , it is hoped
that these calculations will yield some insight into the properties of the
T1Xe eximer. In addition, Ga]]agher2 has recently raised the possibility
of using GaXe as a laser if the Ga can be obtained from dissociation
of GaI3 . Consequently the GaKr curves should also be of intrinsic

interest.

In this paper, the CI calculations on GaKr are presented along with
the model calculations on InKr and TI1Kr . These potential curves are
used as the basis of a classical calculation of the emission &nd absorption

coefficients for these systems.



1I. Details of the calculation
A. Basis set

The calculations use (14s11p6d} primitive Gaussian bases for gallium
and krypton3 as a starting point. The core orbitals (1s,2s,2p,3s,3p) are
sin¢ly contracted to the Hartree-Fock atomic orbitals while the valence
orbitals (4s and 4p) and the 3d orbitals are each described by two contracted
functions (see Table I}, The resulting (5s4p2d/5s4p2d) contracted bases

are constructed using the general contraction scheme of Raffenetti.4

These basis sets are extended to include pelarisation by adding two
diffuse s functions (5s and 5s') and a diffuse p function (5p) to
describe the lowest Rydburg orbitals. The exponents for these orbitals
(z(5s) = .026, z(5s') = .011, z(5p) =.01; are obtained from atomic calcu-
lations on the excited states of Ga . The final basis set thus consists
of a (16s12p6d) primitive basis contracted to [7s5p2d] for Ga and a

(14s11p6d) primitive basis contracted to [5s4p2d] for Kr .
B. SCF calculation

The starting point for the CI calculation is a Hartree-Fock calculation
2+
on the I state

1269146271562 160
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The inner core nolecularorbitals (twelve o , twelve u and four &)
are held doubly occupied from this point on and are replaced by the

rigorous noriucal Hartree-Fock potential.

v = Vy+ I (20; - K;)
core N yecore i i

With the core orbitals removed from consideration, it is convenient
to renumber the valence orbitals so that the Hartree-Fock configuration

is written as

2 2 4

?
1672673680

At Targe R the correspondence for the valence orbitals is

lo + 4sKr
20+ 4pKr
S0 -+ 4s5Ga

40 - 4pGa

Tn > dpKr
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In addition to the valence orbitals, nine o , six = and four &
virtual orbitals are used in the CI calculations. The lowest virtual orbitals
(50, 60, 70, 27, 3n), which correspond to the Ga 5s, 5s', 4p and 5p
atomic orbitals for large internuclear separations, are obtained by the
improved virtual orbital (IVO) procedure.5 The IVO orbitals are obtained
by removing the electron from the 4a (valence) orbital of the above
configuration and calculating the virtual orbitals for the (N-1)-electron

Hamiltonian.

C. CI calculations

Full polarization CI (POL-CI) ca]culations6 which provide a balanced
description of all states of the 4s-4p manifold were carried out. A set
of reference configurations was chosen (see Table II) to describe the dominant

configurations for the 22+ and Zn states of the molecule and the

+
12 state of the ijon.

The full POL-CI ca]cu?atioﬁs incTude all (142) electron excitations
relative to each reference configuration subject to the restrictions that
no more than one electron occupy the Rydberg 5¢ orbital and no more than
ore electron occupy any virtual orbital (60, 2m etc.). This results in
764 spatial and 2314 spin configurations for the 22+ states, 556 spatial
and 1565 spin configurations for the zﬁ states and 368 spatial and 558

1

spin configurations for the 't state. A total of 15¢ , 14r and 26

occupied and virtual orbitals are used in the POL-CI calculations.

|




I11. Results for GaKr

A. Electronic states without spin-orbit coupling

h]
The interaction of ground state Ga (ZS) and Kr ('S) atoms gives

2 2_+

rise toa I and @ “r  state as shown schematically in Fig. 1. In the

22+ state the occupied 4p Ga orbital is oriented along the molecular
axis while in the 2n state it is perpendicular to the axis. The 22+
state should be essentially repulsive inside the van der Waals region

because of the unfavorable interaction of the 4po orbitals on Ga and

Kr The 2n state does not have this repulsive interaction so it shouid
*
be more attractive. The interaction of excited Ga (25) and ionic Ga+(1S)

atoms with ground state Kr gives rise to a 22+ and a ]z+ state
respectively. In both cases these states are expected to be somewhat

attractive.




The potential energy curves (Fi;,. 2 and Table 1I1I) from the POL-CI
calculations generally follow the behavior predicted from these thecretical
considerations. These calculations are nnt, however, designed to treat
Tong-range dispersicn forces. Many excitations which contribute tc a
Cﬁr'G attraction are not included in the wavefurction. For these reasons,
one would expect deeper wells in all the potential curves including the
two lovest, generally repulsive, states. As predicted, the 1zn state
is less repulsive than the 122+ state. The bound excited state 222+
has a minima at 6.36 a.u. about 3.0 eV abcve the ground state curve, while
the minima in the ion curve is at 6.28 a.u. and 5.6 eV above the ground
11

state. Tne well dej 1s are compared with thrse obtained by Gallagher

in Table IV, and as expected, Gallagher's wells are deeper.

The dipole moments cf these states and the transitiu: moments between

v,

2.+ . .
Z  and the Tower states have also been calculated and are given in

Table V ard Figs. 3 and 4,

i e e e S S i SR, e S e o S
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B Electronic states including spin-orbit coupling

A complete treatment of the electronic states of GaKr must include
the effects of spin-orbit coupling. The states considered here, wnich
dissociate to the closed-shell ground state of Kr and an open-shell state
of Ga or Ga' are influenced only by '« spin-orbit matrix e.ements of
the open-shell atom.

7,8,9,10 we have adopted a

Following the procedure used previously,
simple model for inciuding the effects of spin-orbit coupling on the
calculated potential energy curves and wavefunctions. The experimental
spin-orbit parameters for the open-shell aton (Ga and later In , T1) are
used to determine the matrix elements of the spin-orbit interaction, Hso s
coupling the molecular states at infinite separation and these matrix
elements are assumed to be independent of internuclear distance. The
resulting spin-orbit matrix Hso is added to the diaconal matrix of

electronic energies H (R) =

elec! Ei(R) :

6'ij

H(R) = (R) +H

He]ec SO

and the total matrix H is then diagonalized at each internuclear distance
R . Thus, in addition to the assumption tnat the spin-orbit matrix elements
do not change as functions of R , this model assumes that only one-center
terms need be included so that only the spin-orbit coupling on Ga is
important. We would expect trhis procedure to provide reasonable results

to the extent that the molecular states reiain the identity of the atomic
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states from which they are formed. The spin-orbit matrices are given
in Table VI along with the atomic parameters used in these calculations.
The parameter A 1is chosen so that the atomic 2P3/2 and ZPV2 states

have energies of +x and -2)x respectively.

We shall label the molecular states using the convention of Hund's
case (c) where @ , the projection of total angular momentum along the
molecular axis, is the only good quantum number. @ is defined as
Q=A%+ SZ » where A and Sz are the orbital and spin angular momentum
projection, respectively. The molecular 22+ states have only a
@ = 1/2 component, while the 2n states yielda Q= 3/2 and @ = 1/2

state. The states in the @ representation are labeled according to

increasing energy by a Roman numerai. So the @ = 1/2 states are designated

as I1/2 , I11/2 and the @ = 3/2 states are I13/2, 1I3/2
The coupled states are expressed as follows:

11725 = ¢, %S v ¢ P
111725 = -c 1%c% + ¢ 1%
113/2> = 1>

The spin-orbit coefficient Cz and CH are given in Table VII. The
potential curves and transition moments for GaKr including spin-orbit

coupling are given in Table VIII and Figs. 5 and 6.
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IV. Extrapolations to InKr and TIKr

The potential curves for InKr and TIKr are modeled on the
GaKr curves. The lowest excitation energies and the ionization potentials
for the series Ga , In , T1 are given in Table IX. As can be seen, this
series does not form a steady progression. In has a lower ionization
potential and lower excitation energies than Ga , as expected for a
heavier atom. However, T1 has a higher ionization potential and higher
excitation energies. This is due in part to the presence of a filled

12 These effects

4f shell in T1 and the larger spin-orbit effects.
should be considered when extrapolating the GaKr curves to InKr and

T1Kr.

To simulate InKr and TIKr , the experimental spin-orbit parameters
for In and T1 are used to couple the GaKr curves. The curves are
also shifted to give the correct atomic excitation energies at R = o
(see Table IX). This procedure should give at best a qualitative description
of states of InKr and TI1Kr , since the non-spin-orbit coupled states
are expected to have quantitatively different well depths and equilibrium

separations.

The effect of the increasing spin-orbit perturbation in going from
Ga to In and T1 is evident ii the calculated curves which are given
in Figs. 7 and 8. Only the well depths and positions for the 1 1/2 and

II 1/2 states are affected by the spin-orbit coupling. The other states

i e ks — ==
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are the same as those for GaKr except that they have the correct

asymptotic spacing.

The mixing parameters from the spin-orbit coupling calculations for
TIKr are also used as the coefficients of the GaKr wave function to

estimate the transition moments for this system. The T1Kr transition

moments are given in Table X and Fig. 9.

=

T M TPy
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V. Absorption and stimulated emission coefficients for possible laser transitions

The interest in ti'e group I1IB-rare gas systems arises from the possibility
of their use as visible laser systems. In order to judge their usefulness as
lasers it is convenient to calculate the absorption kv(t) and stimulated
emission gv(T) coefficients. Obtaining quantum-mechanical results for these
quantities would require a complex calculation which would be inconsistent with
the extrapolations used to obtain the InKr and TIKr curves. Consequently,
we have used Gallagher's analysis [17], which is based on the classical

Frank-Condon principle.

In order to obtain g, and kv , the CI curves are first fit by Morse
potentials. The parameters for these Morse potentials are given in Table XI.
These parameters can then be used in Gallagher's equations, alonj with the
atomic transition rate, to obtain absorption and stimulated emission coefficients
for pressure and excitation conditions of interest to experimentalists. We
have calculated these coefficients for two different types of conditions.

The high temperature results correspond to the case where the concentration

of the metal is obtained from the vapor pressure of the metal itself, while
the Tow temperature results correspond to obtaining the required concentration
of the metal from vaporization of MI3 (M = Ga, In, or T1). This latter
condition has been suggested by Gallagher as a possible means of obtaining
high concentrations of the metal at low temperatures. 1n both cases the

densities used are 1020/cm3 for Kr , 1016/cm3 = 3[M 2P

) 2
1= 1.5[M °Py ]

1/2:
and 2 x 1014/cm3 = [M 251/2] . The resulting absorption and stimulated
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emission coefficients for GaKr , InKr and T1Kr are given in Figures 10

to 15.
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Table I. Gaussian exponents and contraction coefficients
Exponents Contraction coefficients
Gallium atom
1s 2s 3s 4s
457600. .000222 -.000069 . 000026 -.000006
68470. .001732 -.000535 . 000205 -.000048
15590. .008952 -.002814 .001070 -.000247
4450, .035874 -.011275 .004337 -.001007
1472. . 114000 -.038495 .014707 -.003399
541.3 .274138 -.100714 .039748 -.009279
214.8 .414793 -.211832 .084475 -.019587
88.81 .275395 -.175448 .079654 -.019104
27.18 . 029561 .479840 -.291821 .072753
11.54 -.006815 .634145 -.527118 .134137
3.303 .002253 .069592 .583707 -.181778
1.334 -.001017 -.012299 .674103 -.358241
.1947 .000251 .002774 .028077 .615164
.07158 0.0 0.0 0.0 0.0
5s 5s!
.026 1.0 0.0
.011 0.0 1.0
2p 3p 4p 4p' 5p
3274, .001513 -.000576 .000094 0.0 0.0
765.4 .013070 -.004981 .000800 0.0 0.0
241.6 .067263 -.026421 .004337 0.0 0.0
89.39 .219542 -.089529 .014443 0.0 0.0
36.36 .421107 -.186734 .031377 0.0 0.0
15.60 .376515 -.144494 .021501 0.0 0.0
6.472 .089425 . 258956 -.046233 0.0 0.0
2.748 -.000502 .570187 -.125293 0.0 0.0
1.090 .001761 .325305 -.045636 0.0 0.0
.2202 -.000247 .016563 .452811 0.0 0.0
.06130 0.0 0.0 0.0 1.0 0.0
.01 0.0 C.0 0.0 0.0 1.0
3d 4d
59.66 .031949 0.0
17.10 .163546 0.0
6.030 .367457 0.0
2.171 .456851 0.0
.6844 .305161 0.0
. 160 0.0 1.0

1
= o e =

=
w
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Table 1. Gaussian exponents and contraction coefficients

Exponents Contraction coefficients

Krypton atom

1s 2s 3s 4g
605700. .000231 -.000073 .000029 -.000009
390300. .001755 -.900551 .000221 -.000070
20920. .009076 -.002894 .001159 -.000369
5889. .036990 -.011834 .004781 -.001522
1950. .116154 -.039826 .016056 -.005118
718.2 .278401 -.104801 .043454 -.013886
285.4 .415746 -.217093 .091899 -.029537
118.6 .267204 -.175562 .083789 -.027309
38.16 .027870 .471395 -.303023 .103498
16.45 -.005998 .636794 -.570620 .208810
5.211 .002217 .082255 .501751 -.235737
2.291 -.001092 -.014138 .760483 -.553570
.4837 .000306 .003289 .044857 .701123
. 1855 0.0 0.0 0.0 0.0
2p 3p 4p 4p'
4678. .001392 -.000569 .000156 0.0
1120. .011666 -.004777 .001286 0.0
357.1 . 060858 -.025631 .007059 0.0
131.4 .210040 -.092159 .024990 0.0
52.86 .427000 -.200936 .056870 0.0
22.70 . 383515 -.160784 .040225 0.0
9.547 .097383 .267789 -.084756 0.0
4,167 -. 001087 ,585908 -.24029 0.0
1.811 .002209 .291397 -.038636 0.9
.5337 -. 000509 .015484 .5958154 0.0
.1654 0.0 0.0 0.0 1.0
3d 4d
125.6 .019168 0.0
33.31 . 125638 0.0
12.15 .366069 0.0
4,350 .502482 0.0
1.494 .264377 0.0
.35 0.0 1.0

S
w

e NeXa oo oo N o e o e R
[ Ne N No No NN NN o o e o o )
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Table II. Reference Confiqurations

2£+ states
1 1022023024o1n4
2 102202302501n4
3 1622623026017

2H states
1 1022023021n42n
2 1622623521730

1.+

L state (GaKr+)

2

2023021n4

1 lo




and the ground state of GaKrt . All energies are
relative to -4674. hartrees.
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Table III. POL-CI calculations on the lTow-lying states of GaKr

R 135 22yt 121 gt
]
o -1.200042 -1.095050 -1.198917 -0.992860
15.00 -1.200121 -1.095025 -1.198978 -0.993044
10.00 -1.200290 -1.094061 -1.195328 ~0.994018
; R.00 -1.198650 -1.094202 -1.200204 -0.996703 ,
: 7.00 -1.193963 -1.095454 -1.200450 ~0.999505 |
: 6.00 -1.179381 -1.096768 -1.197718 -1.002018 |
5. 00 -1.135164 -1.088552 -1.179245 -0.997868 i
4.50 -1.086883 -1.064404 -1.148099 -0.967583
4.00 -1.018697 -0.992381 -1.079327 -0.906827
3.75 -0.968656 -0.933786 -1.025394 -0.856247

1 et v i i i

[ 3

e
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Table IV. Potential well depths
Mole -  State CI Morse Fit Gallagher
cule R AE(eV) R AR (eV) R AE (eV)
|
GaKr I]/Z(X]/Z) ~.018 7.55 .021 ]
13/2(x3/2) ~, 040 7.18 .040
II]/Z(AI/Z) 10 .006 10.15 .00642
2
III]/Z(B 21/2) 6.36 .064 6.26 .080
Gakr' I, 6.28 .26 5.95 252
| |
InKr I]/2 8 v, 013 7.86 .00778
a
13/2
II]/Z 10 ~, 006 9.98 . 0064
a
III]/2
2
Io
TIKr I 8 ~, 010 8.5 .012 7.01 .024 i
1/2 i
a L 3
a
III]/2 6.09 .107
a
Io

i a
3 same as GaKr

=
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Table V. Dipole and transition moments for the low-lying states of GaKr

R x2n 125t 22t 12etxn 2%ty 22pt 125t
15.00 0.00598 0.00156 0.07558 0.00183 -1.29167 -1.3101
10.00 0.02605 0.02048 0.56872 0.01631 -1.28976 -1.29762
8.00 0.09152 0.14168 0.89914 0.04761 -1.27767 -1.23098
7.00 0.18861 0.30443 0.95672 0.07894 -1.26770 -1.19024
6.00 0.41543 0.62092 0.81671 0.11663 -1.25536 -1.18926
5.00 0.90382 1.20144 0.45889 0.09916 -1.23487 -1.44020
4.50 1.24437 0.06841 1.19373  -0.13653 -1.20897 -2.06755
4.00 1.64453  -1.27575 5.47300  -0.84619 -0.86801 - .30554
3.75 1.88349  -1.13125 6.45764  -0.90367 -0.78769 .40946
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Tatle VI. Quantities for spin-orbit matrices

Q=1/2 2yt 2y Q= 3/2 ’ 2
25t 0 J2 2 o I Y
2H

V2 =)

Ga A = .001255 au

In X = .00336

T A= .01835

~ dn.

4
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Table VII. Spin-orbit coefficients for the Q = 1/2 states
R(ao) CZ Cq
GaKr 3.75000 .99955 .02998
4.00000 .99960 .02813
4.50000 .99961 .02787
5.00000 .99927 .03811
6.00000 .99641 .08468
7.10000 .98199 .18892
8.00000 .93379 .35782
10.00000 .82915 .55902
15.00000 .81649 .57736
InKr 3.75000 .99704 .07690
4.00000 .99738 .07238
4.5n700 .99742 .07175
5.00000 .99534 .09644
6.00000 .98063 .19588
7.00000 .93712 .34900
8.00000 .87677 .48091
10.00000 .82132 .57047
15.00000 .81649 .57736
T1Kr 3.75000 .97505 .22197
4.,00000 .97731 .21180
4.50000 .97763 .21034
5.00000 .96502 .26219
6.000C0 .91737 .39803
7.00000 .86679 .49867
8.00000 .83612 .54854
10.00000 .81788 .57540
15.00000 .81649 .57736
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Table VIII. Rydberg-valence transition moments in GaKr
(with spin-orbit corrections)

T

I111/2 - 11/2 I111/2 - 111/2 I111/2 - 13/2
R Z (X,Y) Z (X,Y) (X,Y)
15.00 -0.75641 0.74574 -1.06969 -0.52733 -0.91335
10.00 -0.72540 0.75618 -1.0759? -0.50983 -0.91200
8.00 -0. 44047 0.84363 -1.14948 -0.32327 -0.90345
7.00 -0.22486 0.88026 -1.16880 -0.16935 -0.89640
6.00 -0.10071 0.88449 -1.18499 -0.07517 -0.88767
5.00 -0.05489 0.87255 -1.43915 -0.03328 -0.87318
4.50 -0.05762 0.85454 -2.06674 -0.02383 -0.85487
4.00 -0.00859 0.61353 -0.30542 -0.01727 -0.61378

i R
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Table IX. Atomic states of Ga , In , and TI
Excitation Energy
State Ca In T
em ! eV em ! eV em™ ! ev
2p 0.0 0.0 0.0 0.0 0.0 0.0
1/2 . . . . . .
2P3/2 826.24 .10241 2212.56 .274228 7792.7 . 965840
]S]/2 24788.58 3.07234 24372.87 3.020814 26477.5 3.281665
1.P. 48380. 5.9963 46669.93 5.784348 49264.2 6.105886
e il S N TR e 4.\ :3%‘ 'J
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Table X. Rydberg-to-valence transition moments in model TI1Kr
(with spin-orbit corrections)

it i i R

I111/2 - 11/2 I111/2 -111/2 1111/2 - 13/2
R z (X,Y) z (X,Y) (X,Y)

15.00 -0.75641 0.74574 -1.06969 -0.52733 -0.91335
10.00 -0.74665 0.74590 -1.06130 -0.52476 -0.91200
8.00 -0.67524 0.75539 -1.02925 -0.49558 -0.90345
7.00 -0.59354 0.77699 -1.03169 -0.44701 -0.89640
6.00 -0.47336 0.81433 -1.09099 -0.35332 -0.88767

, 5.00 -0.37761 0.84264 -1.38982 -0.22894 -0.87318

, 4.50 -0.43489 0.83575 -2.02130 -0.17981 -0.85487

4.00 -0.06471 0.59985 -0.29861 -0.13000 -0.61378
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Table XI. Morse fitting parameters:
V(R) - V(=) = De[u2 - 2u] where u = exp [B(R, - R)]
-1
Molecule State De Re(ao) B(a0 )
GaKr I]/2 .000772 7.56 .724
13/2 .00147 7.19 722
II]/2 . 000625 10.14 .471
III]/2 .00295 6.26 .853
InKr I]/2 .000286 7.86 .817
a
I3/2
II]/2 .000474 10.24 .483
1111/2a
T1Kr I]/Z .00439 8.52 .633
a
I3/2
II]/2 .000408 10.12 .502
a
Iy

A5ame as for GaKr
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Fig. 1. Orbital diagrams for the electronic states of Ga + Kr and G.aJr + Kr.
The lobes and circles represent the in-plane and out-of-plane p orbitals;
the dashed circle denotes the Rydberg orbital.
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Figure 2.
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Figure 4.

DIPOLE TRANSITION MOMENTS AMONG
THE LOW-LYING STATES OF GaKr
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Figure 5.

THE LOW-LYING STATES OF GaKr AND

E GoKr ™ WITH SPIN-ORBIT CORRECTIONS
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Figure 6.

DIPOLE TRANSITION MOMENTS AMONG
THE LOW-LYING STATES OF GaKr WITH
SPIN-ORBIT CORRECTIONS
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Figure 7.

THE LOW-LYING STATES OF InKr AND
InKr™ WITH SPIN-ORBIT CORRECTIONS
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Figure 8.
E THE LOW-LYING STATES OF TIKr AND
F TIKr* WITH SPIN-ORBIT CORRECTIONS
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Figure 9.

DIPOLE TRANSITION MOMENTS CONNECTING
THE LOW-LYING STATES OF TIKr WITH
SPIN-ORBIT CORRECTIONS
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Figure 11.
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III. Application of the Gordon-Kim theory to the group IIIB-rare gas systems

In recent years, the electron gas methods developed by Gaydaenko
and Nikulin [1], and Gordon and Kim [2] and modified by Rae [3] and Cohen
and Pack [4] have proved successful in calculating the interaction energies
of pairs of closed shell atoms or ions [1-5], of atom-molecule systems[6-7],
of molecule-molecule systems [8], and, recently, of systems with one open
shell atom [9]. These interaction energies are much more accurate than the

simplicity of the Gordon-Kim (GK) method would lead one to expect.

The recent success of the GK method in calculating closed shell - open
shell interaction energies has prompted us to use this method to calculate
the interaction of group IIIB-noble gas pairs. The GK theory has been
most successful in cases where the interaction is non-covalent and where
the atoms are relatively undistorted. For these reasons, systems such as

GaKr would seem to be ideal candidates for a GK calculation.

The electron-gas theory is briefly reviewed in part A, aid our

preliminary results on GaKr are given in part B.
A. The electron gas method
The method we have used is that of Gordon and Kim [2] as modified by

Cohen and Pack [4]. A more detailed description of the theory is available

in these two papers. Briefly the GK theory approximates the intermolecilar

%
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potential V(R) at the distance R by

v(R) - Vo) - vﬁE(R) ¥ vgﬁrr(k)

where

6K
LY A

and these three terms represent the kinetic, Coulomb and exchange inter-
action energies, respectively. To calculate these interaction enzrgies,

the electronic charge density p 1is approximated by the sum of the atomic

charge densities,

With this approximation, the Coulomb interaction can be calculated directly,
but the other terms are all estimated by the formulas for the energy density
of a uniform electron gas [4]. An additional modification [3,4] is made

to the exchange energy to avoid self-exchange contributions.

B. Calculations

We have modified the molecule-molecule GK interaction program of
Parker, Snow and Pack [8], which allows for non-spherical potentials, to
calculate interaction energies for closed shell - open shell atomic pairs.

The density of the open shell atom, in this case Ga , is divided into

. ~ o o
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the spherically symmetric core density plus the valence density. For Ga
in the ground state (4sz4p]), the valence density s constrained to be in
a p orbital directed along the internuclear axis, to forma ¢ molecular

state, or perpendicular to it to forma T state.

In order to expedite the evaluation of integrals, the atomic density
js expanded in a set of Slater basis functions with the coefficients determined
by a least-squares fit [4]. The basis set expansions for the density are
then read into the GK program which calculates the interaction energy

by three-dimensional numerical quadriture.

We have obtained numerically tabulated, relativistic Hartree-Fock
densities for the group IIIB and rare gas atoms from Joseph Mann [10].

The densities of the 4524p] and 45255] states of Ga and the ground state
o7 Kr were fit with small sets of Slater functions. At this time the

fit of the basis set expansion is not very good (~ 10%).

The basis set expansions obtained from this fitting procedure were
then used to calculate the GK interaction energies. Because the fitting
procedure does not normalize the density, the inaccuracy of the present
expansions results in a spurious Coulomb repulsion between the two atoms.

We hope that improving the basis setl fit will correct this error.

e . ’ > T
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The CK potential curves are compared with the CI results (see Section II)

in Figures 1-3. The energies are plottad with respect to the asymptotic

L

energy cf each state. The curve labeled GKR includes Rae's correction while
the GK curve is the unmodified GK theory. The GKR curve for the 122+ state
agrees remarkably well with the CI result. Unfortunately, the agreement for

both the 12n and 222+

I

states are not as good. Specifically the depths and

positions of the potential wells are not predicted accurately. We are

i

currently working on improving the basi., set fit and thereby the interaction

A

energies.
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[V. The Electron Scattering Model

A. Introduction

This section describes the theoretical basis of our calculations
using the electron scattering model. For an excimer system AB , where
A is a closed-sheli system, most of the states of interest correspond
to the asymptotic situation where B 1is excited but A s in its ground
state. Fundamentally, what the electron scattering theory says is that any
charged particle in B sees a potential (XA) , due to the closed-shell
system A , which is the same as if the charged particle were scattered
off of A . This scattering potential is corrected for the fact that A
is "de-polarised" relative to the scattering problem, due to the presence
of the nucleus and other electrons of B . This theory is based on the
model interaction potentials and response functions that arise out of the
many body theory (using Schwinger Functional Derivatives) and that have

been applied to scattering problems [1].

In part B the basic equations are presented and pos. ble methods
for calculating the interaction energy are discussed in part C. The use

of semiempirical forms for the effective notentials are discussed in

part D.

T R R
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The Basic Eauations

% Using many-body field theoretic methods it has been shown that the

change in enerqy, ¢ , resulting from the addition of an electron to a
closed-shell reference system (referred to her2 as A) is given by the one-

particle Dyson equation
) v A -
T(r)(r) + fdrt sR(rsrie)alr) = es(r) ()

where T s the kinetic energy operator and ¢ is the Dyson amplituce

with r and r' being space-spin coordinates. Thus, the prohlem reduces

to an effective one-particle problem in which this particle experiences
an effective potential, EA , which represents &1l the other particles

collectively, taking into account all effects such as polarization,

correlation and exchange, etc. As might be expected, the cost of this

simple formulation is that XA is an extremely complicated entity whick

is both nonlocal and energy dependent and which cannot rigorously be

brought into closed form. However, it has been possible to develop

{
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excellent closeu form approximations to this potential which are based on
well founded physical concepts. Most notable among these is the Random
Phase Approximation (RPA) potential, ZppA which has been very successfully
used . calculating the ionization potentials, excitation energies,
oscillator strengths, and elastic -scattering phase shifts for He [2].

L apA has also been used to accurately calcuiate the ionization and ex-
citation energies of Li [3]. Moreover, it has been shown that this ab

initiv potential encompasses <ther phenomenclogically derived semiempirical

potentials which have bt n used by other workers with great success [4].

It has also been recently demonstrated that by applying the same many-
body techniques to the problem of two electrons added to a closed-shell
reference system (A) one obtains an effective two-particle equation for

the resulting change in energy (5]

2 b}
[1; (T(ri) + fdr'ZA(q;ri':e)) + W + ]dr]'er'WA(r‘],rz;riré)h(r],r‘z) 2
ed(rysry) (2)

where in addition to the individual one-particle potentials there now
appears a two-partic’c effective potential, wA » which represents how the
presence of one particl. affacts the potential seen | the other particle
and which reflects the fact that system A can act as a dielectric medium
to shield the Coulombic interaction between two charged particles. As

with ZA » this potential cannot be rigerously brought into closed form.
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Hovever, an excellent ab initio closed form approximation to this potential
can be obtained with the Random Phase Approximation, wRPA , Which is completely

compatible with the similarly obtained one-particle potential, Ippa

If we now proceed to the case of adding m electrons te our closed-
shell reference system it follows by induction and can be proven formally

that the change in energy is given by

[_gi (T(ri) + jﬁr% XA(Pi;P%5€)) + jﬁ;(T7§%3:;I + ]ﬁr% drj WA(rirj;r%,rj:e))

i>]

A

TR ' 1yA
(r.ierQrk;r,i,rj’rk-E) + PO +fdr] .o dY‘mV (

= ew(r]...r ) (3)
where our notation for three-particle and higher potentials is obvious.

In the above we only considered the addition of electrons to our closed-
shell reference system A. However, we can also add nuclei as well; the only
difference being that when acting on a nuclear coordinate all potential
terms involving electron exchange must of course vanish. Since this can
be trivially accomplished by choosing an appropriate (: ificial) nuclear
spin coordinate, we can immediately generalize (3) to include hoth nuclei
and electrons by allowing the particles to carry different charges, z ,

(where z = -1 for an electron) to give

1 ~ ot 4 L

r]...rm;ri...rr;]:e)]\l’(r]...
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L] A 0 1. rl ] i IA PR | t.
[, (T(r.) - z, jﬁr. x (r.,ri.e)) + £§3Zizj([F;:FET + jﬁridrjw (ri,rj,ri,rj.e))

+ ... W(r]...r ) = ew(r]...r ). (4)

We of course cannot solve (4) since the potentials involved cannot be written
in closed form. However, we can replace these potentials by their RPA
approximates which are in closed form. Furthermore, realizing that we are
deriving a theory for intermolecular forces which is essentially perturbative
in nature, we will now assume that all three-particle and higher potentials

can be neglected so that our equation becomes simply

3 LY 3 1 .
[gg%(T(ri) -z, jﬂri I(rysrice)) + ggé zizj(17213i;r + jﬁr?drij(ri rj;r%,rj:e))] q(r]_,_rm)
= eW(r]...rm) . (5)

Since our interest lies in the calculation of potential energy surfaces,
what we really want is an equation for the change in energy when Mg
electrons and m, nuclei are added to A with these nuclei held fixed
at specific points in space (which we will refer to collectively as R
with the actual spatial coordinate of nuclei i being Ri ). That is,
we want to be able to separate electronic motion from nuclear motion so
that this quantity,£(R) , will be the total potential experienced by

these nuclei and will satisfy the equation

m

n
L_Z1T(R1-) +&(R)T X(R) = eX(R) (6)
1:

b ~ ol
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where X(R) is a function of the nuclear coordinates only. As it
stands, (5) precludes such a separation because o." the energy dependence
of the potentials involved. To overcome this problem we will now assume
that for those solutions to (5) we seek this energy dependence is not
strong  Furthermore, we will also assume that the response of A to the
added particles is instantaneous. In this way we can replace the non-
adiabatic energy dependent potentials in (5) with their hermitian energy
independent adiabatic approximates such as those given in ref. 5. MWith

these substitutions (5) does become separable, and by taking

) ; <\P1-I\Pj> = 6.- (7)

Me 1]

where w(r]...rm ) is a function of only the electronic coordinates

e
we find that € (R) 1is given by

A
L ZJJ i AU

where EA is given by the equation

e

m,
[H(r1...rm sR) + % _[dr 2 (ryr! 2:2 jﬁr w (r; R ;ri))

+ Eg% .[dr dr W r P ,r;rs)] y(r rpeee, e) = E(R) W(r1...r e) (9a)

where H 1is the usual hamiltonian for Mg electrons in the field

of m. fixed nuclei

\ \gh,!! .
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m Z m
e
. - S |
Hr, "m’R)'X_S }:T—’T)"L]—FT
e i=1 j= i>J Jj
m m
> (rs) Ze o (9b)
= hir,) + 1
=T Y

and where all one- and two-particle effective potentials are taken to be
hermitian adiabatic approximates to the true potentials. Note also that
all potential terms involving the m nuclei are now written as local
quantities thereby taking into account the previously mentioned fact

that there are no exchange (i.e. nonlocal) terms in the potentials when

nuclei are being considered.

If we now collectively refer to these My electrons and m,

T

nuclei which have a fixed internuclear geometry as being system B ,
then é?(R) js the change in energy resulting from the creation of system

B in the vicinity (as measured by R ) of A . If R+« then

.{°+€§ which is just the energy B ditself. Therefore, the intermolecular

». .ential of the system A-B as a function of the separation between

A and B is
A - (A _ O A
% VB(R) EB(R) Eg + VB,nuc(R) (10a)
s where
é m
i = "B A(R ) +
VB,nuc(R) = - gé%zi 2, (R, 12%2 BuP (R, R ) (10b)

o il R L

I — R ~ - . '
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and where
M
0 0 B_B 1
E) = + Y2927 - (10¢)
B B itﬁ %3 Ri'Rj

js just the electronic energy of isolated system B and where EQ(R)

is given by
m m
e n
. Aoy B A/ o
[H(Y‘]...Y‘me, ) + 1‘] dr: ( (ri"i) J;] ZJW (YT’RJ’Y‘1))
my,
+ 2: ]ﬁr dr! WA(r Ty ,r'r Y] v ( ) = Eg(R) Wg(r]. r ) (10d)
i>j ! me e

Therefore, given that we know Eg and that we have available good

closed form adiabatic approximates for EA and HA

our problem reduces
to finding the solutions (or rather a particular solution) tc (10d).

In the following section we will 1ook at some ways of doing this.
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C. Determination of ES

Our equation for Eé is of the form
A, A _ A _A
(H+ U") WB = EB WB (11a)
where
Mg M
A - 1 A . 1 \ B A - 1
u (r] r 3R) = ‘Z:.[dr1[z (r1,ri) - .ZJZJW (rT,Rj,r.)]
e i=] J=1
Ma
] IA o ] ]
+ 1%% jﬂridrjw (ri,rj,ri,rj)
m m
e e
A A
= 2p(r) + 3 ap,(r.,rs) (11b)
=1 551217

where we note that Wg is an eigenfucntion of the hermitian 'hamiltonian'
(H + UA) ana that H is the electronic hamiltonian for isolated system B .
If we now explicitly assume that UA is small compared to H (this of
course was implicit in our derivation of UA in the first place) then

UA can be regarded as being a small perturbation on H . As a consequence,
the solution, WS » to (11) which we seek should resemble the electronic
wavefunction for isolated system B , Wg , and this wavefunction should
therefore provide us with a proper starting point determining wé and

A

EB .

1. First-Order Perturbation Treatment

Projecting (11a) against Wg and normalizing Wg to unity gives
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A ARAL L ALAL
Eg = <¥piH + U|vp> & <¥lvp> [ (12a)

whereas if wg is a self-consistent solution for isolated system B

its energy is
0 _ 0 o. . _,01,0. . \
Ep = <WB|H|WB> ; <WB|WB> = 1. (12b)

If we assume that UA is a quite small perturbation to H then we can

solve for Eg using standard first-order perturbation theory to obtain
0 + <W0|UA|WO> (]3)
B B B

so that our first-order perturbative expression for Vg is simply

VB B VB,nuc

0yA,0
+
<WB|U ]WB> c (14)
This of course is equivalent to assuming that the wavefunction for system

B remains virtually unchanged when in the presence of A .

In terms of the one- and two-particle density matrices, p? and pg R

associated with Wg , (14) becomes

A (] []
Vg = VB’nuc + J-dr pA(r )o?(r;r ) +

A t N 0 . Lo |
J JJdrydry qp(ryseplen(ryrgsrry),
r =r r r

(15)

If Wg is a single Slater determinant <o that
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palryarysrisrs) = 1/2[o](r ir )e(rpiry) - pTryirgdog(rysri)]  (16a)
with
(r) e.(r") (16b)

where {®i} are the n one-electron spin-orbitals comprising Wg R

then Vé takes on the form
Vo A + g <¢ |pA|® >+ 172 g [<o.0.| ﬁg¢ o.> - <0.9.] Al¢.¢.>]
B B,nuc =1 i i ’ i# i Q2% J iT] q12 Joite

(17)

where the two-electron integrals over q?z are written in the standard

<12]|12> notatien.

If vg cannot be written as a single Slater determinant but can

be written as a lirear combination of determinant: irvolving n one-electron

spatial orbitals {@?} then (12b) can always be written as

no . n 1
o _ Jj _,0 0 "1 . 0,0/=—,0,0
Eg izj Dy <¢i|h|¢j> + 1 jzk : 03 <®i¢j|r12|¢k®1> (18)

k1
iJ
of Wg and on orbital overlaps. Since UA is of the same form as H

where {Dg,D } are fixed coefficients which depend on the precise form

and, 1ike H , is spin independent (recall that isolated system A must
be closed-shell) we can immediately write our first-order approximation

A
for VB as
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n . M}
poDy <¢?{pA|¢9> + oy D?}
i, Ik,

A
B,nuc

® >

0,0, A .0,0
=V <¢i¢j|q12|¢k®]> (19)
where all operators and integrals are now explicitiy takent to involve
only spatial coordinates. Therefore, we can determine <Wg|UA|W8> by
using the general energy expression (18) but employing one- and two-electron

integrals over the operators pA and q?z instead of the usual integrals
1

over h and r., .
i2
We could continue this perturbation treatment by going on to determine
second-order and higher corrections. However we will stop here and next

consider a self-consistent appraach instead.
2. Seif-Consistent Treatment

Let us now assume that while UA is a small perturbation to H
it is not small enough to justify a simple first-order perturbation

treatment. That is, we will now assume that Wg can still be taken to
be functionally the same as Wg but because of the presence of A the
spatial orbitals themselves distort away from {¢?} to a meaningful

extent. The problem is then to determine these new orbitals {¢i} .

A

Since ¥h is an eigenfunction of electronic motion satisfying (11) this

can b2 done variationally. That is, we can determine these new distorted

A

orbitals by requiring that EB be stationary ‘with respect to changes in

these orbitals. If for simplicity (but not necessity) we assume that

Wg can be written as a Hartree-Fock type wavefunction involving orthonormal
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spatial orbitals (or orthonormal spin-orbitals for the case of an
Unrestricted Hartree-Fock wavefunction) then (18) takes on the simple

Roothaan form

n n
0 0110
En = 2 ¢ f, <o;|h|es>+ ¢ [a,. J,0,0 + b..K 0,0] (20a)
B j=1 11 i i W ¢i¢j 1] ¢i¢j
where
- .0 o, . 0 o, . 0.,0: 1 /.00
,0,0 = <ts[d 00> = <¢j|J¢9|¢j. <0503 0% |¢1¢j> (20b)
1] J 1 12
- 0 - ! o, _ 0,0, 1 ,.0,0
K¢?¢? = <¢i!K¢jl¢i> <¢j1K¢i|¢j> <¢i¢j|r]2|¢j¢i> (20c)

; and where {figaij;bij} are fixed coefficients (for the case of a multi-

i configurational wavefunction these coefficients are simply related to tne
E variationally determined configurational coefficients) which depend on

{ the precise form of wg . Since wg is being taken to have the same

| form as Wg and because of the similarities between H and UA mentioned

i above, we can immediately write our equation for Eg as

o

A
Eg

n
- . A A A
= 2 1i1fi<¢ilh |6.> + 1.z:j [a;; <¢i¢j|912|¢1¢j> *byj <¢i¢j|912|¢j¢1>]

% (21a)

where the operator hA and 9?2 are given by

T L o R
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Therefore, {@i} and therefore Eg

can be determined using standard
basis set expansion (LCAQ) SCF techniques. The only difference is that
instead of using the usual one- and two-electron integrals we must use
integrals over the operators hA and 9?2 instead. However, since

these integrals serve only as imput this difference is transparent to

whatever available SCF procedure we employ.
3. Contiguration Interaction Treatment

For the sake of completeness it should be mentioned that since
WB can be variationally determined there is no need to stop at the SCF
Tevel and we could solve for this function as a Configuration Interaction
(CI) problem. The only difference form a standard CI calculation is
that instead of using the usual one- and two-electron integrals we must
use integrals over the hA and g?z operators defined in (21b). It
should be pointed out however thai any solution for Wé which differs
significantly from Wg implies that for that solution UA can no longer
be regarded as a small perturbation to H and in such a case the validity

of the approximations made in our choice of UA would become subject

to question. This of course also applies in our SCF treatment as well.

D. The Potentials
The one- and two-particle effective potentials ZA and wA
appearing in our final equations in section 1I are hermitian adiabatic

approximates to the true field theoretic potentials. As we have mentioned,
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such potentials can be obtained in closed ab initio form using many-body
theorv within the framework of the RPA approximation and taking the

adjabatic limits. However, while these potentials are tractable they are

nonetheless quite complicated and their use would entail considerable
computational effort. In view of the perturbative nature of our theory

it is reasanable to expect that we could use potentials having simpler
forms. Such simpler potentials can be obtained by making moment expansions

of the RPA potentials and truncating these expansions in a physically

? be cast in forms which are very similar to phenomenulogically derived

meaningful manner [5]. When this is done, the resulting potentials can

- semiempirical potentials which have been used by other workers with
considerabie success [6]. Therefore, it would ceem that the use of com-
plicated ab initio potentials is not warranted (although we do reserve
the option to do so) and that we can take our potentials to have semi-

empirical forms similar to those used by Delgarno and by Victor [6],

7 namely
far o 7 farr 5 g
dr' o (r;e') = - + ldr' o, (rsr') - —— W (k]r|)
: TrT HF 2r|® 6
2 A
¢ 2y -k|r|
- Z—Ifl—ewg(klrn +(a +ag [r +a,lr%)e
j (22a)
'i and
) ag (22b)
fdr] dry Wr(ry,rpsrd,ry) = E.I_é-:——z g (k| ry | W3 (K| 1y )P (cOS vyp)
2
A
E _ o
-T;‘Tf%—jjy*N4(klr]|)w4(klr2|)P2(cos YIZ)

1170y

1 ~ !;.J . . i
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where we have chosen our coordinate system to be centered on A which

for simplicity we now take to be an 3tom having a nuclear charge of zA

- - - - -

x
and where
= - n
: Wn(x) = (1-e"X ) s a cutoff function
Y12 = angle between vectors g and ro
PQ(X) = Tlegendre polynomial of the gth degree
ag = dipole polarizability of A
; ag = approximate quadrupole polarizahility of A (adjustable)
k = aporoximately 1/2 o where o is the ~ffeclive radius
of A (adjustable)
{ai} = adjustable monopole parameters
1 and
*
A Np @A (r')[Z-Pr r'] q>?(Y")
 (r3r') = % T2
HF i=1 [r-r]

is the static Hartree-Fock potential of A with {¢?} being the np

spatial Hartree-Fock orbitals for the electrons in A . P is the

r,r'

permutation operator if r is an electronic coordinate whereas Pr A
L

0
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if r is a nuclear coordinate. Nnte that all quantities are row purely

spatial and that zA and wA are therefore explicitly spin independent.

In (223) the first term is simply the pntentiai due to the nucleus

of A and the second term js the static Hartree-Fock potential for the ]

electrons in A occupying the spatial orbitals {¢?} . The next two

it s

; terms in (22a) are asymptotically correct induced ¢ pole and quadrupole

—

polarization potentials which die ofi rapidly a’ shert distances from A .
The final term is an induced monopole term which serves as a short range
correction potential. The terms in (22b) describe a- asymptotically
corre t dielectric potential which properly cancels out one-particle
induced dipole and guadrupole polarizations of A due to two particles
of the same charge when these particles are on opposite sides of A .

that these potentials represent a significant simplif’ .ation cver the

ab initio potentials is clear in that cur two-particie potential is
strictly local and the only nonlocal term 1a tne one-particle potential
is simply the usual Hartree-Fock exchange potential. However, despite
their simplicity, potentials such as these have been used very success-
fully for a veriety of problems in the past and should therefore be quite

adequate for our purposes.

As it stands, (22b) is concise and to the point. However, one
impoartant property is obscured. This is that our two-particle potential
can be written in terms of one-particle operators only. To see this

we need only express “'2 angle Y12 in terms of the spherical angles

—— 3 B e RS VIS R . ) .
= s T e i = e - . = - — vﬁ.
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for each vector. Thus, by making use of the expansion

2
- g-m)! m m
Pg(cos Y]Z) = Pg(cos eI)Pg(cos 62) + 2 m§1 ey Py (cos e])Pg(cos 62)
[cos mo, COS mp, + sin mo, sin m¢2] (24)

where PE(X) is an associated Legendre polynomial, we find that (22b)

can be rewritten as

1 ] A 1 ]
fdr1 dr2 W (r],rz;r],rz) =

-
-
no
S
-
nN
[43]
&
S

where

Qy(r) = Jal P05k r])P, (cos o)

Qz(r) = \}aﬁ |r|-2w3(k|r|) P}(cos 6) cos ¢

Q5(r) = \/;K ' | k|r|) P}(cos 8) sin ¢

Q,(r) = «Elrl'3w4(klr|) p,(cos o) 2D
Qg(r) = 1/3\/__|r| 3wd(klrl (cos 8) cos ¢

Qﬁ(r) = 1/3,j;;.|r|- wr(klrl) P?(cos 9) sin ¢

Q,(r) = 1/12\/;E|r|-3w4(k|r|) P(cos 6) cos 2¢

1/12,/a2 Ir1 73, (kIrl) P5(cos o) sin 26

=
x
—~
-3
~—
1t
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